Ruminant Nutrition
The Art and the Science of Feeding

Scott Waltner DVM, MS
Skagit Animal Clinic
Puget Sound Veterinary Nutrition Group, LLC

Metabolic Disease and Toxicology

Outline
- The Big Picture
- Diseases
 - Ketosis
 - Hypocalcemia
 - Hypophosphatemia
 - Hypomagnesemia
- Monitoring
- Investigation
- Summary

Transition Cow Health

- Between Dry Period and Initiation of Lactation
- Any feed transition can be a problem area
- The fewer transitions the better
- Heifers are often very predisposed
 - Social status
 - Competition for feed and water

Where are the mistakes made?

- Cow count
- Computers LIE
- Dry Matter Intake
 - Lack of Tracking Systems
- Overcrowding
 - Fresh cow and CU cow 90% density
- Farm formulation
 - Farmers change rations
- Forage Changes
Ketosis

Host

- Pathogen
- Environment

Ketosis

- Starvation – Negative Energy Balance
- Not Enough Groceries – Energy
 - Massive Fat Mobilization
 - Liver overwhelmed
 - Ketone Body Formation
 - Acetoacetate
 - β-hydroxybutyrate

Signalment

- High producing - Genetics
- Mature
- Over conditioned - BCS > 4/5
- Obese
- High parasite load
- Confined - lack of exercise
- Incidence 5 – 90%

Clinical Signs

- Digestive
 - Anorexia
 - Increased rumen motility
 - Massive decrease in milk production
 - Dry, firm, feces
 - Depressed
 - Often normal TPR

- Nervous
 - Digestive signs PLUS
 - Hyper-exitable
 - Ataxia,
 - Hypermetria
 - Excess salivation
 - Aggressive

Time of Occurrence

- Postpartum

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>Postpartum Ketosis</th>
<th>Peak Lactation Ketosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine ketones</td>
<td>Moderate to High</td>
<td>High</td>
</tr>
<tr>
<td>Blood glucose</td>
<td>Low to Normal</td>
<td>Very Low</td>
</tr>
<tr>
<td>Blood NEFA</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Response to Therapy</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Time of Occurrence</td>
<td>6 – 10 days postpartum</td>
<td>3 – 6 weeks postpartum</td>
</tr>
</tbody>
</table>

Clin. Path. and Ketosis

Acetoacetate, β-hydroxy butyrate, acetone

- Hyperketonemia
 - > 100 mg / dl
- Hypoglycemia
 - Normal 40 – 60 mg /dl
 - Ketosis 10 – 30 mg/dl
- Lymphocytosis, neutropenia +/-
- Increased NEFA
- Ketoneria
Clin. Path. and Ketosis

- NEFA = Definitive Diagnosis
- Sample on every cow
 - Not so with urine
- Objective analysis
 - Put a number to the symptom

Ketone Tests

- Keto Stix – Ames Company
 - Used on urine or serum, does not work well with milk.
 - Sensitivity – 10 mg acetoacetate/dl
 - Must be kept very dry or they deteriorate and false negatives.

Ketone Tests

- Ross Test
 - Used on urine or serum
 - Sensitive at 2/5 mg/dl of acetone + acetoacetate (expressed as acetone equivalents).
 - Placed approximately one gram of a 1:100 mixture of sodium nitroprusside and ammonium sulphate in a test tube and add 5 ml of urine (or serum). Shake well and then add 2 cc of concentrated ammonium hydroxide. Look for purple color at liquid interface.

Ketone Tests

- Denco Powder (Denver Chemical Manufacturing Co.) consists of sodium carbonate, ammonium carbonate, ammonium sulfate, and sodium nitroprusside in a granular form.
 - Can be used for milk, urine, or serum
 - Read at one minute rather than 15 to 30 sec. for other tests
 - Acetoacetate tends to turn powder pink, acetone turns it purple. Because acetone is usually present in smaller concentrations compared to acetoacetate, a pink reaction is read as a trace to +1 and a purple reaction is +2 to +4.
 - This test can be used as a screening test on milk for subclinical ketosis.
 - Does not work well on colostrum
 - Sensitive at 10 mg acetoacetate/dl

Ketone Tests

- Acetest – Tablet form - Ames Company
 - Used on serum or urine. Sensitive at 10 mg acetoacetate/dl

Metabolic Disposition of Mobilized Fat
Ketosis Therapy and Prevention

- Dextrose – d-glucose
 - 500cc at 50% solution IV
 - Effective time = 2 hours
- Glucocorticoids
 - 20mg Dexamethasone
 - Create hyperglycemia for 36 hours

Metabolic Disposition of Mobilized Fat

Ca Propionate
- Glucose precursor
- 1#
- Nutrical® - Not for Sheep
 - High copper

Propylene Glycol
- 8 oz.
- Over dosage will decrease DMI via CNS depression
Ketosis Therapy and Presentation

Choline – Rumen Protected
- Reashure®
- 2 oz/cow/day close-up and fresh
 - 21 to +30 days
- Increase VLDL formation
- Increase fat transport from the liver

Ketosis Therapy and Presentation

- Niacin
 - 6-12g/d PO
 - Decreased lipolysis

Ketosis Therapy and Presentation

- Methioine - Alimet
 - One of two limiting amino acids – First?
 - Addition to ration decreases CHO need for microbial protein production
 - Methyl donation
 - Donation of methyl groups from methionine may further enhance energy balance

Metabolic Disposition of Mobilized Fat

- Adipose triglycerides
- Liver
- NEFA
- Glucose
- VLDL
- Hepatocyte Storage
- Ketone Bodies
- Mammary Gland
- Milkfat
Ketosis Drench
- 8 oz Propylene Glycol
- 1 lb Ca Propionate
- 2 oz Rumen Protected Choline
- 1 oz Methionine - Alimet
- 2 oz Yeast
- 6 oz KCL
- qs 5 gal Water

Why Do Cows Get Fat?
Reproduction Failure

Ketosis Treatment and Prevention
Maximize DMI
- Bunk management
- Stocking density

Avoid Exogenous Ketones
- Forage quality
- Silage fermentation

Milk Fever
Hypocalcemia
* Low Serum Ca *

Characteristics and Tendencies
- Jersey > Holstein
- > Third Lactation
- Greater in BCS > 4/5
- 90% within 72 hours postpartum
 - Watch for 120 DIM Milk Fever
- Heritability

Three “Stages” of Milk Fever

I = Standing
Total Serum Ca 8 – 6.5 mg/dl

II = Down
Total Serum Ca 6.4 – 4.0 mg/dl

III = Dying
Total Serum Ca < 4.0 mg/dl
The Real World

Diagnosis – Individual Cow
- Down cow – just post partum
- Cold ears
- Lethargic

Treatment – Individual Cow
- 2 – 500ml – Ca f mg – IV
- Drench – PO
- FEED – at her level
- Water – at her level

Monitor Response

Differential Dx
- Injury
- Obturator paralysis
- Uterine Torsion
- Mastitis
- Grass Tetany
- Ketosis
- Hypophosphatemia
- Hemorrhage

Ca Endocrine Regulation

- **PTH – Low Serum Ca**
 - Increases GI Absorption – Vit D
 - Increased Renal P Excretion
 - Increased mobilization from bone
- **Calcitonin – High Serum Ca**
 - Increase Bone Deposition
 - Decrease GI Absorption

Ration Evaluation

DCAD Calculations

1. \((0.15 \times \text{Ca meq}) + 0.15 + \text{Mg meq} + \text{K meq} + \text{Na meq} - (\text{Cl meq} \times 0.2 + 5 \times \text{meq} + 0.3 \times \text{P}) \)
 Target 400 to 500

2. \((\text{Na meq} + \text{K meq}) - (\text{Cl meq} + 5 \times \text{meq}) \)
 Target – 50 to -150

Milk Fever – Herd

Presentation and Treatment

- **Urine pH**
 - Holsteins 6.2 – 6.8
 - Jerseys 5.8 - 6.2
 - pH < 5.8 = Acidosis
Milk Fever – Herd Diagnosis

- Total Ca v. Ionized Ca
- Serum Ca on 10 Fresh Cows
 - > 2nd lactation?
- Ration Evaluation
 - Close up dry
- Urine pH

Milk Fever
Herd Prevention and Treatment

- Track DMI in Close Up Pen
- No Free Choice NaCl for dry cows
- 90% Stocking Density
- Feed Available to Cows During Parturition
- Treat All Suspected Milk Fever by a Protocol
- Monitor Response

Close Up Diet Formulation

K < 1.2% - No Acidification
K 1.2% - 1.5% - ?
K > 1.5% - Acidification

HCL Products
 - Soy Chlor 16-7
 - Nutri Chlor 18-8
True Anionic Salts
 - Ammonium Chloride
 - Magnesium Sulfate

Close Up Diet Formulation

Ca 180 g/d – 220 g/d
P 35 g/d
K < 1.2%
S .3 - .4%
Mg .4%
Vit E 2000 – 4000 IU/d
Vit D 65 KIU/d

Close Up Diet Ingredients

- Yeast – stabilize rumen health
- Ca Proprionate – energy and calcium
- Acidification Agent
 - DMI
- Molasses –
 - Some is good
 - Too much increases insulin and decreases DMI
- Bypass Fat – Energy Source
 - 25 lbs per cow per day
- Tallow ??
Grass Tetany
Hypomagnessemia

- Beef, Dairy, Sheep, Goats

Signalment
- Older ruminants
- Spring
 - Lush, fast growing pasture
 - Cereal crop – pasture / feed

Clinical Signs
- Down
- Twitching
- Hyper-aesthesia
- “Neurotic”
- Paralysis

Mg Flux

Why? - Pathogenesis
- Requirement ~ .2% Mg in DMI
- Dietary Mg has low availability
 - 7% - 35%
- High K reduces Mg availability
- High Na increases Mg excretion

Diagnosis – Real World
- Mature Beef Cow
- Down Post Calving – cold ears
- Spring Pasture
- Twitching / Neurotic
- Treat and Monitor

Treatment
- 500 ml 23% Ca borogluconate – IV
 - [15% Mg gluconate]
- Oral Mg
 - Enema
 - 60g Mg Cl₂ in 200 ml H₂O
Prevention

- Diet
- TMR + MgO – Mg to .4%
- Pasture + Mg Min block
- Grazing
 - Rotation
 - Fertilization
 - Limestone
 - Mixed legume - grass

Nutritional Investigation

- Step 1
 - Owners / management complaint
 - Owners / management goals
- Step 2
 - If the owner’s Chief Complaint and employee’s Chief Complaint are different then return to Step 1

Case 2 - Disease Investigation

- History – Poor Production, Some Mastitis
 - Nutritional
- Exam and Testing
 - Farm Visits – 3 – Interviewed all employees and owner
 - Visited with 2 nutritionists involved
 - Evaluated and balanced all rations
 - Attained written records from previous veterinarian
 - DHI Records
 - Weekly bulk tank milk samples for mastitis
 - Blood samples on all cows giving birth – Ca, P, Mg

Disease Investigation

- Results
 - Owner was paying on SPC – owner induced reproductive failure
 - Severe Mycoplasma mastitis outbreak – Contagious
 - Improper load mixing of feed
 - Severe mechanical dysfunction in milking parlor
 - Slight improper balancing of ration
History
- Owner, manager, employee
- Ensure it is a nutritional problem
- #1 Blame = Nutrition

Objective Information
- Production – DHI – Daily Weights
- Reproduction – Computer
- Disease – Treatment Lists, Computer

The Four Rations of the Farm
- The formulated – nutritionist
 - The Reformulated – on the farm
- The fed – DMI tracking
- The consumed – DMI tracking
- The metabolized – Milk weights

Ration Evaluation
- Don’t look for a Mn deficiency first
- DMI Limitation
 - Forage Quality
 - Water Quality
 - Poor Communication

Sample and Test
- NIR v. Wet Chemistry
- Table / Book Values
- Feed Tags
Sampling / Testing

- **Feed Samples** – Ingredient, TMR
 - Wet Chemistry
 - DM, CP, NE, ADF, NDF, Ca, P, Sol P, Nitrate, Fe, S, Mo

- NEFA – Non- Esterified Fatty Acid
 - Indicates insufficient energy intake - Ketosis

Body Condition Scoring

- **Dairy / Beef**
 - Subjective measure of body fat
 - 1-5 scale / 1-9 scale
 - 1 = emaciated
 - 5 / 9 = obese
 - Change in condition within the life cycle is often more critical than the condition at 1 point in time

Rumen Fluid Analysis

- pH > 6
- pH 5.5 to 6 borderline
- pH < 5.5 = Acidosis
 - 4 hr post feeding
- Microscopic Evaluation
 - Protozoal activity
- Rumen Cl
 - High rumen Cl = GI stagnation

Analysis of Information

- Categorize History, Exam, Diagnostics
- Multiple categories
 - Multi path / multi disease
- Utilize objective information

Summary

- Find simple solutions to complex problems
- Think in the trenches – cause / the "why"
- Keep them eating
- Promote a simple feeding program
 - Easy to implement
 - Easy to manage
Classification of Forage Trace Elements

<table>
<thead>
<tr>
<th>Trace Mineral</th>
<th>Deficient, ppm</th>
<th>Marginal, ppm</th>
<th>Adequate, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td><4.0</td>
<td>4.1 – 7.0</td>
<td>>7.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><20</td>
<td>20 – 40</td>
<td>>40</td>
</tr>
<tr>
<td>Zinc</td>
<td><20</td>
<td>20 – 40</td>
<td>>40</td>
</tr>
<tr>
<td>Selenium</td>
<td><0.1</td>
<td>0.1 – 0.2</td>
<td>0.2 – 0.3</td>
</tr>
<tr>
<td>Cu:Mo ratio</td>
<td><4.1</td>
<td>4.0 – 5.1</td>
<td>6 – 10:1</td>
</tr>
</tbody>
</table>

Protein Overfeeding The Consequences

- $$$ Loss
- Poor Reproduction
- Metabolic Inefficiency

Diagnosis of Protein Over Feeding

- BUN
- MUN
- Manure Scoring
- Ration Evaluation

MUN

<table>
<thead>
<tr>
<th>MUN Grade</th>
<th>Low MUN (<12 mg/dl)</th>
<th>Normal MUN (12-16 mg/dl)</th>
<th>High MUN (>16 mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>low SSC +/- or NEL, low SIP +/- or DIP +/- or UIP</td>
<td>SIP, DIP, UIP, AAA in balance, low CHO +/- or NEL</td>
<td>Excess SIP +/- or DIP relative to CHO/NEL, excess UIP or imbalance in AAA</td>
</tr>
<tr>
<td>3.0 – 3.2</td>
<td>low SIP +/- or DIP +/- or UIP</td>
<td>Balanced SIP, DIP, UIP, AAA, and CHO/NEL</td>
<td>Excess SIP +/- or DIP relative to CHO/NEL, imbalance</td>
</tr>
<tr>
<td>>3.2</td>
<td>low SIP +/- or DIP +/- or UIP, AAA balanced, excess CHO/NEL</td>
<td>Balanced SIP, DIP, UIP, AAA, and CHO/NEL</td>
<td>Excess SIP +/- or DIP relative to CHO, excess of UIP vs NEL or AAA imbalance</td>
</tr>
</tbody>
</table>

NPN Toxicosis

- ≠ Nitrate Toxicosis
- Ruminants Hydrolyze ammonia
- Predispose by Low CHO Diets
- Generally Due to Mixing Error
- Failure of Use of NH₃, y
 - NH₃ → NH₄⁺ → H⁺
 - NH₄⁺ Alkalizes the Rumen
 - TCA Inhibited → Acidosis
 - Acidosis Creates Hyperkalemia
 - Hyperkalemia = Death
NPN Toxicosis

- Dx – Rumen pH > 8
 - Ration evaluation
 - Feed samples

Clinical Signs

- Ab Pain
- Muscle Tremor
- Ataxia
- Bloat
- Violent Death

Nitrate Toxicosis

- NO3 Reduction NO2
 - Hb NO2 Met Hb

- Source
 - Oats, Pigweed
 - Stressed Grasses

- Testing
 - NO3 or NO3-N (multiply by 4.4)
 - < .3% Nitrate (DM) Dairy
 - .5% Nitrate (DM) Beef
 - .8% Acute Toxicity

Clinical Signs

- Dyspnea
- Poor Reproduction
- Abortion
- Decreased Milk Production

Treatment – Methylene Blue

- 5 – 15 g / kg IV

Protein Overfeeding

- $$$ Loss
- Poor Reproduction
- Metabolic Inefficiency

Diagnosis of Protein Over Feeding

- BUN
- MUN
- Manure Scoring
- Ration Evaluation
MUN

<table>
<thead>
<tr>
<th>Milk Crude Protein %</th>
<th>Low MUN (<12 mg/dl)</th>
<th>Normal MUN (12-16 mg/dl)</th>
<th>High MUN (>16 mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Low NSC +/- NEL. Low SIP +/- DIP +/- UIP</td>
<td>SIP, DIP, UIP, AAA in balance. Low CHO +/- NEL</td>
<td>Excess SIP +/- DIP relative to CHO/NEL, Excess UIP or imbalance in AAA.</td>
</tr>
<tr>
<td>3.0 – 3.2</td>
<td>Low SIP +/- DIP +/- UIP</td>
<td>Balanced SIP, DIP, UIP, AAA, and CHO/NEL</td>
<td>Excess SIP +/- DIP relative to CHO/NEL balanced</td>
</tr>
<tr>
<td>>3.2</td>
<td>Low SIP +/- DIP +/- UIP, AAA balanced, Excess CHO/NEL</td>
<td>Balanced SIP, DIP, UIP, AAA, Excess CHO/NEL</td>
<td>Excess SIP +/- DIP relative to CHO, Excess of UIP vs NEL or AAA imbalance</td>
</tr>
</tbody>
</table>

NPN Toxicosis

- Dx – Rumen pH > 8
 - Ration evaluation
 - Feed samples

Nitrate Toxicosis

- NO3 Reduction NO2
 - Hb NO2 Met Hb

Source
- Oats, Pigweed
- Stressed Grasses

Testing
- NO3 or NO3-N (multiply by 4.4)
 - .3% Nitrate (DM) Dairy
 - .5% Nitrate (DM) Beef
 - .8% Acute Toxicity

NPN Toxicosis

- Clinical Signs
 - Dyspnea
 - Poor Reproduction
 - Abortion
 - Decreased Milk Production

Nitrate Toxicosis

- Clinical Signs
 - Methylene Blue
 - 5 – 15 g / kg IV
Rumenal Acidosis
- Treatment – Individual Cow
 - Antibodies
 - Anti-inflammatory agents
 - Mineral oil PO
 - Charcoal PO
- Treatment – Herd
 - Yeast
 - Bicarb / Sesquicarbonate
 - Ration Evaluation
 - Particle Separation Evaluation
 - Forage Evaluation

Excess CHO Intake
- **Ruminal Acidosis**
 - Excess CHO = *Strep bovis* proliferation
 - *Strep bovis* produces Lactic Acid
 - Reduction in Rumen pH until *Strep bovis*
 - Enables Bactobacilles Growth
 - Lactobacilles Produces D-Lactate
 - D-Lactate cannot be metabolized to propionate

Rumenal Acidosis
- Clinical signs
 - Diarrhea – Hindgut fermentation
 - Ab Pain
- Diagnosis
 - Rumen pH
 - 5.0 - 5.8 = subclinical
 - <5 = Clinical

Dietary Urea Levels
- < 3% of Concentrate
- < 1% Total Diet
- 0.1% /cow/d is common with corn silage diets
- Ensure adequate CHO

Treatment of Urea Toxicity
- Treat early and fast
- Large quantity COLD H₂O
 - 7 – 10 gal in adult cattle
 - Dilutes NH₄
- 2-6 Liters Vinegar (cattle)
 - Reduces pH
 - Reduces NH₄ absorption