The relationship between Predictive value positive (Pvp), Predictive value negative (Pvn), Sensitivity (Se), Specificity (Sp), and Disease Prevalence (Pr) is described by Baye's Theorem.

<table>
<thead>
<tr>
<th>Outcome of Diagnostic Testing for Target Disease</th>
<th>Actual Disease Status - To be estimated by clinician</th>
</tr>
</thead>
<tbody>
<tr>
<td>(The Clinician's Axis)</td>
<td>The Target Disease is Present (D+)</td>
</tr>
<tr>
<td>Test is Positive (T+)</td>
<td>True Positive (Tp)</td>
</tr>
<tr>
<td>Test is Negative (T-)</td>
<td>False Positive (Fp)</td>
</tr>
<tr>
<td>Test is Negative (T-)</td>
<td>False Negative (Fn)</td>
</tr>
<tr>
<td></td>
<td>True Negative (Tn)</td>
</tr>
</tbody>
</table>

For the relationship between predictive values, which is what the clinician needs, and diagnostic test performance, remember the following 5 formulas and their relationships to the four bold cells above.

Note: If Prevalence, Se and Sp are expressed as percentages (a number between 0% and 100%), first convert each to probabilities (a number between 0.00 to 1.00) by dividing the percentage by 100.

Number with Disease Present = N x Pr (Pr: probability animal has disease prior to test or the true prevalence of the disease in a group - Clinician has to estimate this!).

- **Sensitivity (Se)** = Tp / (Tp + Fn)
 (# True Positives / # Target Disease Positives)
 (The probability that a diseased animal tests positive.)

- **Specificity (Sp)** = Tn / (Tn + Fp)
 (# True Negatives / # Target Disease Negatives)
 (The probability a target disease-free animal tests negative.)

- **Pvp** = Tp / (Tp + Fp)
 (# True Positives / # Test Positives)
 (The probability a test-positive animal has the target disease.)

- **Pvn** = Tn / (Tn + Fn)
 (# True Negatives / # Test Negatives)
 (The probability that a test-negative animal doesn't have the target disease.)

Apparent Prevalence = [# Test Positives / N]
(Note: In most cases this isn't the true disease prevalence!)

If N = 1 (an individual animal) the numbers are the probabilities that the animal will be in one of the four interior cells. If the clinician is dealing with a group of N animals with a disease prevalence Pr in the group, the following are the relationships between the numbers in the cells, test performance and Pr.:

<table>
<thead>
<tr>
<th>Test Result:</th>
<th>The Target Disease is Present</th>
<th>The Target Disease is Absent</th>
<th>No. of Test Positives (Sum of Tp + Fp)</th>
<th>No. of Test Negatives (Sum of Fn + Tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Se x (Pr x N)</td>
<td>(1 - Sp) x ((1 - Pr) x N)</td>
<td>Pr x N</td>
<td>(1 - Pr) x N</td>
</tr>
<tr>
<td>Negative</td>
<td>(1 - Se) x (Pr x N)</td>
<td>Sp x ((1 - Pr) x N)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To obtain the numbers for calculating **Pvp** and **Pvn** from **Se**, **Sp**, **Pr** and **N**, follow steps 1 through 9:

1) Put group size **N** in this cell.
2) Multiply **Pr** x step 1) cell.
3) Subtract step 2) cell from step 1) cell.
4) Multiply **Se** x step 2) cell.
5) Subtract step 4) cell from step 2) cell.
6) Multiply **Sp** x step 3) cell.
7) Subtract step 6) cell from step 3) cell.
8) Add step 4) cell and step 7) cell.
9) Add step 5) cell and step 6) cell.

Pvp: Divide step 4) cell by step 8) cell.

Pvn: Divide step 6) cell by step 9) cell.